Principles of Finance

Prof. Dr. Dennis A. V. Dittrich

2014

DuckTales: In ation

Fisher Equation

- 2 individuals write a loan contract to borrow P_{t} dollars at a nominal interest rate of i
- next year the amount to be repaid will be $P_{t} \times(1+i)$
- imagine the individuals decide to write a loan contract to guarantee a constant real return r (payment in goods next year instead of cash)
- to repay the loan, the lender has to buy ($1+r$) units of goods next year for each unit of goods that he can buy now
- the (nominal) prices will change with the in ation π.
- if the price of one unit of goods is P_{t} today, its price P_{t+1} next year will be $P_{t+1}=P_{t} \times(1+\pi)$
- the total amount of dollars needed next year to repay the loan is then $P_{t} \times(1+\pi) \times(1+r)$

Fisher Equation

$$
i=i_{r}+\pi^{e}
$$

$i=$ nominal interest rate
$i_{r}=$ real interest rate
$\pi^{e}=$ expected inflation rate

When the real interest rate is low,
there are greater incentives to borrow and fewer incentives to lend. The real interest rate is a better indicator of the incentives to borrow and lend.

Fisher Equation

- if the two loan contracts with repayments
- $P_{t} \times(1+i)$
- $P_{t} \times(1+\pi) \times(1+r)$
are equal:

$$
\begin{aligned}
(1+i) & =(1+\pi) \times(1+r) \\
1+i & =1+r+\pi+r \pi \\
i & =r+\pi+r \pi \\
i & \approx r+\pi
\end{aligned}
$$

- if r and π are small the error by discarding $r \pi$ is very small, e.g. $r=0.030$ and $\pi=0.015$ results in $r \pi=0.00045$, a less than one percent error.

Real \& Nominal Interest Rates (3-Month T-Bill)

Estimating the real interest rate involves estimating expected in ation as a function of past interest rates, in ation, and time trends and then subtracting the expected in ation measure from the nominal interest rate.

If you expect the in ation rate to be 15% next year and a one-year bond has a yield to maturity of 7%, then the real interest rate on this bond is...?

Determinants of Asset Demand

Wealth the total resources owned by the individual, including all assets
Expected Return the return expected over the next period on one asset relative to alternative assets
Risk the degree of uncertainty associated with the return on one asset relative to alternative assets
Liquidity the ease and speed with which an asset can be turned into cash relative to alternative assets

Assuming the same coupon rate and maturity length, when the interest rate on a Treasury In ation Protected Security is 3%, and the yield on a nonindexed Treasury bond is 8%, the expected rate of in ation is...?

Supply and Demand in the Bond Market

Demand:
At lower prices (higher interest rates), ceteris paribus, the quantity demanded of bonds is higher: an inverse relationship
Supply:
At lower prices (higher interest rates), ceteris paribus, the quantity supplied of bonds is lower: a positive relationship

Theory of Portfolio Choice

Holding all other factors constant:

- The quantity demanded of an asset is positively related to wealth
- The quantity demanded of an asset is positively related to its expected return relative to alternative assets
- The quantity demanded of an asset is negatively related to the risk of its returns relative to alternative assets
- The quantity demanded of an asset is positively related to its liquidity relative to alternative assets

Response of the Quantity of an Asset Demanded to Changes in Wealth, Expected Returns, Risk, and Liquidity		
Variable	Change in Variable	Change in Quantity Demanded
Wealth	\uparrow	\uparrow
Expected return relative to other assets	\uparrow	\uparrow
Risk relative to other assets	\uparrow	\downarrow
Liquidity relative to other assets	\uparrow	\uparrow

Market Equilibrium

- Occurs when the amount that people are willing to buy (demand) equals the amount that people are willing to sell (supply) at a given price
- $B_{d}=B_{s}$ de nes the equilibrium (or market clearing) price and interest rate.
- When $B_{d}>B_{s}$, there is excess demand, price will rise and interest rate will fall
- When $B_{d}<B_{s}$, there is excess supply, price will fall and interest rate will rise

Shift in the Demand Curve for Bonds

Price of Bonds, P

Quantity of Bonds, B

Shifts in the Supply of Bonds

Expected pro tability of investment opportunities in an expansion, the supply curve shifts to the right
Expected in ation an increase in expected in ation shifts the supply curve for bonds to the right
Government budget increased budget de cits shift the supply curve to the right

Shifts in the demand for bonds

Wealth in an expansion with growing wealth, the demand curve for bonds shifts to the right
Expected Returns higher expected interest rates in the future lower the expected return for long-term bonds, shifting the demand curve to the left
Expected In ation an increase in the expected rate of in ations lowers the expected return for bonds, causing the demand curve to shift to the left
Risk an increase in the riskiness of bonds causes the demand curve to shift to the left
Liquidity increased liquidity of bonds results in the demand curve shifting right

Shift in the Supply Curve for Bonds

What happens if expected in ation rises?

Expected In ation and Interest Rates
(Three-Month Treasury Bills), 1953-2011

Response to a Business Cycle Expansion

Response to a Rise in Expected In ation

What happens if the economy expands?

Business Cycle and Interest Rates (Three-Month Treasury Bills), 1951-2011

How might a sudden increase in people's expectations of future real estate prices a ect interest rates?

Supply and Demand in the Market for Money: The Liquidity Preference Framework

Keynesian model that determines the equilibrium interest rate in terms of the supply of and demand for money.
There are two main categories of assets that people use to store their wealth: money and bonds.
Total wealth in the economy $=\mathrm{B}^{s}+\mathrm{M}^{s}=\mathrm{B}^{\mathrm{d}}+\mathrm{M}^{\mathrm{d}}$
Rearranging: $B^{s}-B^{d}=M^{s}-M^{d}$
If the market for money is in equilibrium $\left(M^{s}=M^{d}\right)$,
then the bond market is also in equilibrium $\left(B^{s}=B^{d}\right)$.

Equilibrium in the Market for Money

As the interest rate increases:

- The opportunity cost of holding money increases
- The relative expected return of money decreases
and therefore the quantity demanded of money decreases.

Shifts in the demand for money

Changes in Equilibrium Interest Rates in the Liquidity Preference Framework

Income E ect a higher level of income causes the demand for money at each interest rate to increase and the demand curve to shift to the right
Price-Level E ect a rise in the price level causes the demand for money at each interest rate to increase and the demand curve to shift to the right

Shifts in the Supply of Money

Changes in Equilibrium Interest Rates in the Liquidity Preference Framework

- Assume that the supply of money is controlled by the central bank
- An increase in the money supply engineered by the Central Bank will shift the supply curve for money to the right

What happens if income rises?

What happens if the money supply increases?

Price-Level E ect and Expected-In ation E ect

- A one time increase in the money supply will cause prices to rise to a permanently higher level. The interest rate will rise via the increased prices.
- Price-level e ect remains even after prices have stopped
rising.
- A rising price level will raise interest rates because people will expect in ation to be higher in the (near) future.
- When the price level stops rising, expectations of in ation will return to zero.
- Expected-in ation e ect persists only as long as the price level continues to rise.

Response to an Increase in Income or the Price
Level
Interest Rate, i
Response to an Increase in the Money Supply
Interest Rate, i

Quantity of Money, M

Why should a rise in the price level (but not the expected in ation) cause interest rates to rise when the nominal money supply is xed?

Does a Higher Rate of Growth of the Money

Supply Lower Interest Rates?

- Liquidity preference framework leads to the conclusion that an increase in the money supply will lower interest rates: the liquidity e ect.
- Income e ect nds interest rates rising because increasing the money supply is an expansionary in uence on the economy (the demand curve shifts to the right).
- Price-Level e ect predicts an increase in the money supply leads to a rise in interest rates in response to the rise in the price level (the demand curve shifts to the right).
- Expected-In ation e ect shows an increase in interest rates because an increase in the money supply may lead people to expect a higher price level in the future (the demand curve shifts to the right).

Money Growth (M2, Annual Rate) and Interest
Rates (Three-Month Treasury Bills), 1950-2011

Response to an Increase in Money Supply Growth

