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Bidding challenges learning theories; even with the same bid,
experiences vary stochastically: the same choice can result in either
a gain or a loss. In such an environment the question arises how the
nearly universally documented phenomenon of loss aversion affects
the adaptive dynamics. We analyse the impact of loss aversion in a
simple auction using the experienced-weighted attraction model of
learning. Our experimental results suggest that individual learning
dynamics are highly heterogeneous and affected by loss aversion to
different degrees. Apart from that, the experiment shows that loss
aversion is not specific to rare decision making.

JEL Classification C91, D44, D83.

Keywords loss aversion, bidding, auction, experiment,
EWA learning

There are very rare situations where bidding games – usually referred to
as auctions – are dominance solvable, like in the random price mechanism
(see Becker, de Groot, and Marshak, 1964) or in second-price auctions (see
Gandenberger, 1961, andVickrey, 1961).Apart from such special setups, bidding
poses quite a challenge for learning. According to the usual first-price rule (the
winner is the highest bidder, and she pays her bid to buy the object), one has to
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Loss aversion and learning to bid

underbid one’s own value (bid shading) to guarantee a positive profit in case of
buying. Such underbidding may cause feelings of regret or loss when the object
has not been bought, although its pricewas lower than one’s ownvalue.Similarly,
even upon winning the auction, feelings of loss may be evoked since one could
have won more by a lower bid. When the values of the interacting bidders are
stochastic, whether one experiences a loss or a gain is highly stochastic.

In this paper we investigate two important issues. First, we are going to
reassess the issue of learning in auctions. Although bidding experiments are
numerous in economics (see Kagel, 1995, for an early survey), hardly any of
them provides asmuch opportunity for learning as we do (e.g.,Garvin and Kagel,
1994; Selten and Buchta, 1998; Armantier, 2002, and Güth et al., 2003). We
believe that the number of repetitions in most studies has been too low to fully
account for possible learning dynamics. In stochastic environments, learning is
typically slow and the number of repetitions or past bidding experiences are
important dimensions.Our one-bidder contest (Bazerman and Samuelson, 1983;
Ball et al., 1991) allows for a considerable number of repetitions. To directly
identify the path dependence of bidding behaviour (i.e., why and how bidding
behaviour adjusts in the light of past results) without any confounding factors,
we deliberately choose a bidding task that lacks strategic interaction.

We will analyse the learning dynamics by estimating the parameters of
several variants of Ho et al.’s (2007) Experienced Weighted Attraction (EWA)
learning model. The EWA learning model is a hybrid of reinforcement and
belief models that uses information about forgone payoffs as well as past choice
behavior. Either information would be ignored by pure reinforcement or pure
belief learning. Estimating best-fitting parameter values for the EWA learning
model thus effectively allows to compare a large number of different learning
models in one go. We are interested in the individual behaviour which we
expect to be heterogeneous with respect to the underlying parameters of the
EWA model. Consequently, we are going to estimate the parameters for each
participant separately and discuss the distribution of estimated parameters.

Second, we experimentally test for the impact of loss aversion (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1992) on the learning dynamics in
this bidding task by incorporating a loss parameter in the EWA learning model.
Loss aversion is referred to as the behavioural tendency of individuals to weigh
losses more heavily than gains; there is ample evidence for loss aversion in both
risky and risk-free environments (see Starmer, 2000, for an overview). In our
setup, we avoid the possible ambiguity of the reference point implied by loss
aversion: losses are monetary losses compared to no-trading. Obviously, in a
first-price auction all possible choices can prove to be a success (yield a gain) or
a failure (imply a loss), at least in retrospect. Therefore, the usual and robust
finding of loss aversion should be reflected in the adaptation dynamics.

More specifically, we distinguish losses from bidding and hypothetical, i.e.,
non-realized, retrospective gains from not bidding as both shape the future
attraction of bidding. In doing so we can reasonably exclude idiosyncratic risk
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attitudes since due to cumulative payments (over 500 rounds) the variance of
total earnings should be close to zero. Our main hypothesis on the impact of
loss aversion claims that, in absolute terms, an actual loss will change bidding
dispositions more than an equally large gain. To the best of our knowledge,
loss aversion has so far received little attention (one example, considering only
hypothetical losses, is Ockenfels and Selten, 2005) when specifying learning
dynamics in situations comparable to ours. Note that – since risk aversion might
disappear when playing many rounds due to diversification – one could expect
that the so far documented confirmation of loss aversion might also be specific
to rare decision making.

In the basic bidding task (originally studied experimentally by Samuelson
and Bazerman, 1985, and more recently by Selten et al., 2002, and Charness
and Levin, 2009) to which subjects are exposed in our experiment, the only
bidder and the seller have perfectly correlated values. Put differently, the seller’s
valuation is always the same constant and proper share of the bidder’s value.
Whereas the seller knows her value, the bidder only knows how it is randomly
generated.

The bid of the potential buyer determines the price if the asset is sold. In
our experiment (like in earlier studies) the seller is captured by a robot strategy
accepting only bids exceeding her evaluation. Thus, the bidder has to anticipate
that, whenever her bid is accepted, it must have exceeded the seller’s valuation.
Neglecting this fact may cause the winner’s curse as in standard common-value
auctions involving more than one bidder.

If the seller’s share or quota in the bidder’s value is high, i.e., when the
positive surplus is relatively low, such a situation turns out to be a social dilemma:
According to the solution under risk neutrality¹, the bidder abstains from bidding
in spite of the positive surplus for all possible values. However, if the quota is
low, the surplus is fully exploited: the optimal bid exceeds the highest valuation
of the seller and thereby guarantees trade. Earlier studies have only focused on
the former possibility. In our experiment each participant, as bidder, repeatedly
experiences both low and high quotas. It is straightforward that the bidding tasks
participants are exposed to constitute an ideal environment to study learning
because other, possibly confounding behavioural determinants such as the
effects of social preferences are nonexistent.

When bids can vary continuously, it is rather tricky to explore how bidding
behaviour is adjusted in the light of past results. Traditional learning models like
reinforcement learning, also referred to as stimulus-response dynamics or law of
effect (see Bush and Mosteller, 1955), cannot readily be applied. Therefore, we
offered participants only a binary choice, namely to abstain from or to engage
in bidding. In order to observe directly the inclination to abstain or engage,
respectively, we allowed participants to explicitly randomise their choice among

1 Playing as many rounds as in our experiment renders risk neutrality a natural assumption when
deriving a benchmark solution.
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the two possible strategies (for earlier experiments offering explicitly mixed
strategies, see, e.g., Ochs, 1995, or Anderhub et al., 2002).

In retrospective analysis, both situations where bidders should abstain from
or engage in trade will render both choices as good and as bad with positive
probability. If restricted to binary choices a bidder’s (un)willingness to engage
in trade could be detected by comparing behaviour in different rounds of the
same game. This, however, would interfere with learning which we expect to be
relevant. Allowing for mixing is a way to elicit (un)willingness to trade without
confounding it with learning. Will loss aversion be equally strong for a bidder
who has chosen probability 1 and one who came to the same choice by imple-
menting proper mixing? If not, our experiment would serve as a particularly
challenging setup for observing loss aversion, and, thus, it would even corrobo-
rate any confirmation of loss aversion effects. Another justification for the use
of explicit mixed strategies is that in a binary choice protocol we could never be
sure whether and, if so, participants randomly determine their choice behaviour.
Offering explicit random devices therefore implies a better control of individual
decision making.

More specifically, each participant played 250 rounds each of both the same
high- and same low-quota game where a low quota suggests an efficient bench-
mark solution and a high quota an inefficient one. As mentioned earlier, we con-
sider such extensive experience necessary since learning in stochastic settings
is typically slow.We also wanted sufficiently many loss and gain experiences
for each participant when trying to explore the path dependence of bidding
behaviour and how adaptation is influenced by loss aversion.

As our analysis of the data shows, learning in the experiment is indeed slow;
half of the subjects seem not to learn using the payoff maximising strategies
within the given number of rounds. According to the EWA learning model,
observed learning is characterized by a long memory, participants do not dis-
count past experiences. This is reasonable given that even though the bidding
task is highly stochastic, it remains stable throughout the experiment. Retro-
spective gains and losses have a slightly more heterogeneous impact on the
learning dynamics. Even so, the majority of participants attach considerable
importance to retrospective gains and losses. With respect to loss aversion we
observe a substantial degree of heterogeneity in our data. Although the ma-
jority of participants puts a higher weight on losses than on gains, there are a
few participants who discount losses. Nonetheless, allowing for loss aversion
significantly improves the goodness-of-fit of the EWA learning model.

The paper proceeds as follows: The next section introduces the basic model
in its continuous and its binary forms. In Section II we discuss the details of the
experimental design and the laboratory protocol. Section III presents the exper-
imental data. In Section IV we discuss experience-weighted attraction learning
and loss aversion; we estimate several learning functions for our experiment
participants and assess the importance of losses in their learning behaviour.
Finally, Section V concludes.
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1. The model
Before introducing the binary bidding task, let us briefly discuss its continuous
version. Let v denote the value of an asset to be sold by a seller. This value is
randomly drawn froma uniformdistribution defined on [0, 100] and is unknown
to the bidder; the latter only knows how it has been generated. The seller knows
v but has an evaluation that is equal to qv, with q ∈ (0, 1] and q ≠ 0.5. She
agrees to sell the asset only if the bidder’s bid satisfies b > qv. The value of q is
known to both the seller and the bidder.

Since a risk neutral buyer earns v − b when b > qv (or v < b/q) and 0
otherwise, her expected payoff takes the following expression:

E(v − b) =
⎧{{
⎨{{⎩

∫b/q
0 (v − b) 1

100
dv = b2

100q ( 1
2q − 1) for 0 ≤ b ≤ 100q

∫100
0 (v − b) 1

100
dv = 50 − b for 100q < b < 100.

(1)

The first equation stands for the bidder’s expected payoff when submitting a
bid smaller than 100q, the seller’s highest possible evaluation of the asset. The
second equation stands for the expected payoff when submitting a bid greater
than this maximum possible evaluation.²

It thus follows from equation (1) that any positive bid b ≤ 100q implies a
positive expected profit if q < 0.5. Thus, the optimal bid b∗ depends on q via

b∗ = b∗(q) =
⎧{
⎨{⎩

100q for 0 < q < 0.5
0 for 0.5 < q < 1

(2)

so that E(v − b∗) = 50 − 100q for 0 < q < 0.5 and 0 for 0.5 < q < 1. In case of
q > 0.5, the positive expected surplus of

∫
100

0
(1 − q) 1

100
vdv = 50(1 − q) (3)

is lost, whereas in case of q < 0.5 it is fully exploited.
The binary version of this game assumes only two possible bids, 0 and B,

instead of all bids in [0, 100]. In our experiments, all participants will repeatedly
encounter two bidding environments: one with 0 < q < 0.5 for which it is
optimal to bid B, and one with 0.5 < q < 1 for which it is optimal to bid 0. In
both environments, participants will have to choose between bidding 0 and
bidding B (by assigning a weighing probability, cf. next section). We further
assume that 0 < B < 100 so that bidding B does not warrant trade and thus
efficiency.

Let us finally investigate the stochastic payoff effects for bidding 0 or B. By
bidding b = 0, the bidder never buys. However, as the asset’s value v is revealed

2 Notice that the assumption of constant relative risk averse (CRRA) preferences in this common
value context would lead to an intractable model as the first order condition for expected utility
maximisation would lead to a term (−b)a whenever the CRRA parameter a is smaller than 1.
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Figure 1: Expected profits for each bid b under the experimental conditions

after the sale, she should understand that compared to b = B, her previous
bid b = 0 is retrospectively justified if B > v, which happens with probability
P+
0 = B/100. On the other hand, if v > B > qv, which happens with probability

P−
0 = B/(100q) −B/100, having bid b = 0 counts as a loss of v−B in retrospect.

For b = B, if no trade takes place (because qv > B, occurring with probability
Pn0 = 1 − (B/(100q))), then there is no retrospective feeling of a loss or a gain.
Similarly, b = B implies a gain of v − B if v > B > qv, which happens with
probability P+

B = B/(100q) − B/100, and a loss of v − B if B > v, which occurs
with probabilityP−

B = B/100. There is no tradewhenever qv > B,which happens
with probability PnB = 1 − (B/(100q)). The assumption 0 < B < q(1 + q)−1

guarantees that all probabilities P+
0 = P−

B , P
−
0 = P+

B and Pn0 = PnB = Pn are
positive. To summarise, regardless whether q = q or q = q applies, the gains
and losses associated to bidding b = B are actual, whereas those associated to
bidding b = 0 are retrospective.

2. Laboratory protocol
Participants were instructed that there are two roles and theywould act as buyers
with the computer acting as the seller by following a fixed robot strategy. The
instructions informed participants about parameter values, the distribution of
the values, and the rule followed by the robot seller.³

We chose B = 25, q = 0.4 and q = 0.6. For such parameters and assuming
risk neutrality, it is optimal to bid b = B when q = 0.4 and to bid b = 0 when
q = 0.6. We report in Figure 1 the bidder’s expected profits for each value of q.

To observe the bidders’ propensities Pt for bidding B, we asked them to
assign a probability of submitting a bid B on an 11-point scale ranging from
0 to 100 percent with a step size of 10 percentage points. Therefore, the pure
strategies of bidding 0 or B are equivalent to a choice of 0 or 100 percent on

3 A transcript of the German instructions can be found in the Appendix.
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the 11-point probability scale; of course, we did not impose a default option
for the mixed strategy choice in order not to influence subjects in any way.⁴
One of the advantages of such a method is that it avoids the experimentally
uncontrolled randomness of a binary choice between bidding bt = 0 and bt = B
when checking, for each individual participant, how well a postulated adaptive
process captures her idiosyncratic learning behaviour.

While the feeling of loss aversion is probably less importantwhen submitting
bids by chance, we conjecture that the variety of situations encountered over a
long sequence of play should ensure its salience in subjects’ behaviour.⁵ Note
further that no subject in our experiment consistently determined his or her bid
completely by chance and that pure strategy choices were rather frequent.

In spite of the 500 rounds of play, the whole experiment took less than two
hours to complete, including the time needed to read the instructions. As already
mentioned, we allowed for a sufficiently large number of repetitions to be able
to test for learning effects since the assessment of loss aversion in a stochastic
environment requires many repetitions. At the end of each round t, participants
were informed about the value vt, whether trade occurred or not, and about
earnings for both possible choices, i.e. for bt = B and bt = 0. The values q = 0.4
or q = 0.6 were displayed on each decision screen and alternated every ten
rounds.

The conversion rate from experimental points to euros (1:200) was an-
nounced in the instructions. Participants received an initial endowment of 1500
experimental points (€ 7.50) to avoid bankruptcy during the experiment. As
a matter of fact, such a case never occurred. Average earnings were €10.56
(s.d.=1.3). Overall, 42 subjects participated in the two sessions that we con-
ducted. The experiment was computerised using z-tree (Fischbacher, 2007) and
was conducted with students of the University of Jena.

3. Descriptive results
We start by presenting some descriptive results on subjects’ behaviour before
assessing the extent of loss aversion within a learning framework.

4 The decision screen that we used in the experiment is displayed in the Appendix.
5 We are not aware of any study that specifically analyses this question. One referee pointed out
that there could be a demand for mixing strategies when subjects are given the option to do so.
This could indeed be the case in the first rounds of play as subjects may then find it difficult to
figure out how to bid (i.e., mixing strategies can represent a way of spreading the risks associated
to each pure strategy.) However, we expect such demand effect to vanish as the experiment
proceeds since subjects should eventually figure out the sub-optimality of mixing strategies in
either q-regime (as Observation 2 below suggests).
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Figure 2: Average decision time

3.1. Decision time

Since an experiment with 500 rounds of play is rather long, our first concern
is naturally whether participants remained cognitively active during the whole
experiment. In particular, boredom could induce subjects to consider no longer
the available information and to adjust no longer their behaviour accordingly.
Although we cannot exclude that some subjects got bored by the experiment,
there are several indications that this was not at all predominant: Figure 2 shows
the average decision time (in seconds) over the 500 rounds of play. The average
decision time is the longest in the first period with about 490 seconds, and it
declines as the experiment proceeds. By round 80 the average decision time
falls below 5 seconds and it reaches 3.5 seconds in the last period.

We also observe periodic spikes in the average decision time until the very
end. As most spikes occur at a q-regime switch, their presence suggest that
participants considered the new information displayed on their screens. The
average increase in decision time after a regime switch is about 30%, and the
difference is highly significant (p < 0.001, according to a Wald-test using the
results of amodel that controls for repeatedmeasurements).After the last regime
switch (at round 490) the increase in decision time is about 67% (one-sided
t-test, p = 0.030).

Eventually, we take the subjects’ positive comments and reactions at infor-
mal end-of-session debriefings as evidence that they did not get bored by the
experiment. Consequently, we are confident that participants took the experi-
ment seriously and remained cognitively active till the very end.
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Figure 3: Relative frequency of probability choices

3.2. Strategy choices and learning

Observation 1 Only 4 (out of 42) subjects always played the optimal pure strategy
of bidding Bwhen q = 0.4, and only 2 subjects always played the optimal pure strategy
of bidding 0 when q = 0.6. Subjects performed much better when q = 0.4 than when
q = 0.6.

Table 1 displays the 500 weighing decisions of each participant along with the
25 individual average deviations from the optimal bids when q = 0.4 and when
q = 0.6.⁶ As deviations from the normative prediction are represented in grey,
one can immediately see how subjects fared in comparison to the theoretical
prediction and to what extent these deviations decline over time, to what extent
learning occurs. Only a few participants play almost always optimally when
q = 0.6 (i.e., subjects 2, 19, 26, and 39), and a few more do so when q = 0.4 (i.e.,
subjects 2, 9, 19, 26, 27, 28, and 39). For most subjects, the average individual
deviations are significantly larger when q = 0.6 than when q = 0.4, which
suggests a tendency to bid even if it is not optimal to do so. Such a bias towards
bidding resembles the well-documented phenomenon of the winner’s curse in
standard first-price auctions. Another obvious aspect of the bidding data – that
will have to be taken into account in the estimation of learning models – is a
considerable heterogeneity across subjects.

Figure 3 shows for each value of q, the relative frequency of the eleven
possible probability weights to be put on the event b = B. When q = 0.4, the
optimal pure strategy of bidding B has been chosen 58% of times whereas the
zero bid option has been chosen 3% of times.When q = 0.6, the optimal strategy
of bidding 0 has been chosen 18% of times whereas bidding B for sure has been
chosen 34% of times. The latter suggests that quite a few participants did not
correctly take into account the expected revenue implications of such a choice

6 Subjects played 25 blocks of 10 periods of each q-regime.
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Table 1: Choices and Deviations from the Normative Prediction
Subject Choices Mean deviation
ID 1 Round 500 q q

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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Table 1: Choices and Deviations from the Normative Prediction
Subject Choices Mean deviation
ID 1 Round 500 q q

31
32
33
34
35
36
37
38
39
40
41
42
Note: Black dots represent actual choices during the 500 rounds, grey bars

are deviations from the normative solution. Mean deviations from the
normative solution in columns three and four are computed for each
block of ten rounds under the respective q-regime. While a point at the
bottom of a line indicates bidding with probability 0, a point at the top
of a line indicates bidding with probability 1. The subject is closer to the
normative solution the more white space the graph shows.
Subject 19 exceeded the time limit and had to stop after only 400 rounds.

when q = 0.6. In view of the many rounds played, arguing that subjects bid B
for sure because they were extremely risk seeking, seems dubious. Note also
that efficiency concerns cannot explain obsessive bidding since there has been
no human seller.

To measure the extent of optimal play in individual behaviour, we look at
the deviation of choices from the normative prediction, i.e. the relative size of
the grey areas in Table 1. This measure of individual performance equals 0 if the
participant always chose the expected payoff maximising pure strategy. It equals
1 if the participant always chose the expected payoff minimising pure strategy.
Values between 0 and 1 result from mixing.

Figure 4 reports the distributions of deviations from the normative prediction
for each q-regime and the individual difference in average deviations between
treatments. The average deviation is equal to 0.207 when q = 0.4 and 0.593
when q = 0.6. The difference is significant at p < 0.001 according to a Wilcoxon
rank sum test for paired data. It confirms that individual decisions are closer to
the theoretical prediction when q = 0.4 than when q = 0.6.
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Figure 5: Difference in average deviations from the normative prediction between
first and last 40 periods for both treatments

Observation 2 On average, subjects performed significantly better in the last than in
the first 40 rounds of the experiment. This holds for both q-regimes.

Figure 5 plots the distributions of individual differences in the average
deviations from the normative prediction between the first and the last 40 rounds
of each q-regime. A negative difference indicates a reduction in deviations from
the normative prediction over time and suggests that learning occurred over
the course of the experiment. According to this measure, 22 participants moved
towards the normative prediction when q = 0.4 and 23 when q = 0.6. Similarly,
14 participants moved away from the normative prediction when q = 0.4 and 15
when q = 0.6.On average, the participants’ deviations decreased by 5 percentage
points between the first and the last 40 rounds when q = 0.4 (t-test, p = 0.035)
and by 9 percentage points when q = 0.6 (p = 0.043). Overall, 29 participants
‘learnt’ the normative solution and deviations decreased by 7 percentage points
(p = 0.003).

In the last 100 rounds of play, 24% of participants (10 bidders) always played
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the optimal strategy when q = 0.4, and 10% of the participants (4 bidders) did
so when q = 0.6. The latter outcome is in line with the 7% reported by Ball
et al. (1991) for a game that corresponds to an environment where q = 0.6,
which spanned over 20 rounds and for which no significant change in behaviour
was found. Nevertheless, as only four bidders use the optimal strategy with
q = 0.4 and q = 0.6, the well-documented pattern of the winner’s curse is still
very present. This result corroborates the findings of Selten et al. (2005) and
Charness and Levin (2009),who also found this pattern to be persistent after 100
or 60 rounds of play, even in treatments designed to simplify subjects’ bidding
task.

Observation 3 Revenues of bidders are higher under q = 0.4 than under q = 0.6.
Many bidders fall prey to the winner’s curse under q = 0.6.

As expected, average earnings are also different across q-regimes: they are
equal to 825.76 points when q = 0.4 (s.d.: 223.96; Min: 269; Max: 1274) and to
-213.66 points when q = 0.6 (s.d.: 127.99; Min: -547; Max: 20).

4. EWA learning with(out) loss aversion
The situation our participants face in the experiment poses quite a challenge for
learning theories. Obviously, whatever the bidder chooses, she can retrospec-
tively experience both an encouragement and a regret with positive probability.
As already mentioned, we are interested in two specific questions: (i) Will re-
gret be more decisive than positive encouragement as suggested by (myopic)
loss aversion (Benartzi and Thaler, 1995; Gneezy and Potters, 1997)? (ii) Will
learning bring about an adjustment to bidding b = B when q = q and b = 0
when q = q?

In general, reinforcement learning relies on the cognitive assumption that
what has been good in the past, will also be good in the future. In such a context,
one does not have to be aware of the decision environment except for an im-
plicit stationarity assumption justifying that earlier experiences are a reasonable
indicator of future success. In our setup, actual as well as retrospective gains and
losses can be derived unambiguously since the bidder is informed about the
true value vt after each round t, regardless whether the object has been bought
or not.

Ho et al. (2007) proposed a one-parameter adaptive experience-weighted
attraction (EWA) learning model which takes into account both past experience
and expectations about the future. It nests reinforcement and belief learning and
can predict the path dependence of individual behaviour in any normal-form
game. Camerer (2003) shows that EWA has a better (predictive) fit than pure
reinforcement and pure belief learning (and quantal response as a no-learning
benchmark) in a number of games. He notes, however, that identification of
EWA parameters requires a substantial number of periods. Ho et al. (2007) claim
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that the EWA learning model can easily be extended to games with incomplete
information.

In the following, we describe howwe incorporated loss aversion in the EWA
learning model for our game of incomplete information. Denote bidder’s jth
choice by sj, the round t choice by st, and the payoff from choice sj by 𝜋j. Let
I(⋅, ⋅) be an indicator function that is equal to 1 if the arguments are equal and

0 otherwise. Using the notation of Ho et al. (2007), a bidder’s attraction Aj
t for

choice j at time t can be defined as

Aj
t =

𝜙Nt−1A
j
t−1 + [𝛿 + (1 − 𝛿)I(sj, st)]𝜋j

t

Nt−1𝜙(1 − 𝜅t) + 1
(4)

whereNt = Nt−1𝜙(1− 𝜅t) + 1 andN0 = 1. Here, the parameter 𝜙 reflects profit
discounting or, equivalently, the decay of previous attractions owing either
to forgetting or deliberate discounting of past experience when the learning
environment is changing. This parameter will be freely estimated, as in the
original EWA model of Camerer and Ho (1999). The parameter 𝛿 stands for the
weight placed on retrospective gains and losses (foregone payoffs). A parameter
value of 𝛿 = 0 reduces the EWA learning model to a pure reinforcement model.
On the other hand, being fully responsive to foregone payoffs, i.e. 𝛿 = 1, means
that the decision maker’s behaviour is not only reinforced but rather driven by a
thorough cognitive retrospective analysis of behaviour.

Ho et al. (2007) proposed to tie the decay of attraction to the weight on
foregone payoffs: 𝜙 = 𝛿. They argue that a subject whose behaviour is driven by
a thorough cognitive retrospective analysis is also more likely not to discount
past experiences in a stable environment. We will estimate models where we
place different restrictions on 𝛿 to analyse the implications of the assumptions
of pure reinforcement and pure belief learning, as well as to test whether the
heuristic simplification of Ho et al. (2007) is justified within our stochastic, yet
stable bidding framework.

Finally, 𝜅 controls the growth rate of attraction. A value of 𝜅 = 0 implies
that attractions will be averaged, a value of 𝜅 = 1 inplies that attraction will be
cumulated.

Ho et al. (2007) argue that if in the past a subject often changed her strategy,
she will be more likely to change her strategy now given the same feedback.
This can be reflected in the model by letting 𝜅 be equal to a normalised Gini
coefficient on choice frequencies. In our estimations we will focus on average
attraction under pure reinforcement and pure belief learning, i.e. we restrict
𝜅 = 0. Furthermore, we will estimate the EWA model as proposed by Ho et al.
(2007) and compute the normalised Gini coefficient on choice frequencies for
each q-regime and period t separately in order to use this variable in place of 𝜅t.

In our analysis, the attraction Aj
t will only be calculated for the binary choice

of bidding B or not bidding. We need to compute only AB
t ; the attraction of not
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bidding is always zero because the payoff for not bidding is always zero. The
mapping of the attraction AB

t to the mixed strategies via a probabilistic choice
function is defined in the next section.

To augment the standard model by loss aversion, we introduce a loss weight
l, and we define by 𝜓t the actual losses and non-realised, retrospective gains
in round t, depending on whether bidding B generated a loss or bidding 0 left
some money on the table:

𝜓t = 𝜌0t (vt − B) + 𝜌Bt (B − vt) (5)

where 𝜌0t = 1 if vt > B > qvt and b = 0, and 𝜌0t = 0 otherwise, and similarly,
𝜌Bt = 1 if B > vt and b = B, and 𝜌Bt = 0 otherwise.

The bidder’s attraction AB
t for the binary choice of bidding b = B in round t

then becomes

AB
t =

𝜙Nt−1A
B
t−1 + [𝛿 + (1 − 𝛿)I(sB, st)][𝜋B

t + l𝜓t]
Nt−1𝜙(1 − 𝜅t) + 1

. (6)

With such a specification, a lossweight of l = 0 indicates that losses influence
the attraction of choosing b = B to the same extent as gains.While a loss weight
of l = −1 indicates that losses have no influence on the attraction, a loss weight
of l = 1means that losses influence the attraction of choosing b = B by twice
the extent of gains.

4.1. Estimation procedure

Learning models such as those considered here are models of individual be-
haviour.Yet,most econometric tests of thesemodels report aggregate parameters
that have been estimated from individual behaviour in interactive games. While
such estimates often suggest a behaviour that is consistent with some kind of
reinforcement learning, they typically do not illustrate the extent of heterogene-
ity in subjects’ behaviour. For our analysis of loss aversion it is thus important to
note that, e.g., Johnson et al. (2006) provide empirical evidence that individual
loss aversion is heterogeneous. Additionally, using Monte Carlo simulations,
Wilcox (2006) has shown that there exists a strong estimation bias if players
are heterogeneous but a homogeneous representative agent model is estimated.
We therefore estimate our models separately for each participant and discuss
the distributions of the estimated parameters.⁷ For the reasons of comparability,
we shall also report the estimation outcomes of a model that assumes a repre-
sentative agent and includes the data from all participants, comparable to the
model used in Ho et al. (2008) based on centipede game data by Nagel and Tang
(1998).

7 One could have estimated a random coefficients model to reduce the estimation bias but, as
this would have required specific assumptions on the distribution of each random coefficient,
we chose not to proceed this way.
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In the tradition of reinforcement learning models, the attraction AB
t for the

binary decision to bid B in period t is assumed to determine the probabilistic
choice behaviour (see Bush and Mosteller, 1955; Roth and Erev, 1998; Camerer
and Ho, 1999). Since we allowed explicit mixing of the two pure strategies
bidding B = 25 and not bidding we need to map the attraction AB

t to the
eleven available mixed strategies. The mixed strategies follow a natural order
given by their respective probability of submitting the bid. Consequently, the
mapping of the attraction AB

t to the mixed strategies can be achieved by an
ordinal multinomial choice model (see Agresti, 2010). If the natural order of the
mixed strategies were not obvious to our participants an alternative modelling
approachwould include computing separate attractions for each availablemixed
strategy and mapping them to choices via an unordered multinomial choice
model.⁸

We choose the ordered logit model for the mapping of attraction to choices:
Let s∗ be a single latent variable with

s∗
t = 𝛽1I(qt, q)AB

t + 𝛽2I(qt, q)AB
t + ut (7)

where I(⋅, ⋅) is equal to 1 when the arguments are equal and 0 otherwise. The
attraction AB

t is evaluated separately for each q-regime and is denoted AB
t for

q = q and A
B
t for q = q. The initial attractions AB

1 and A
B
1 are set equal to

the expected payoff of the corresponding q-regime. The error u is logistically
distributed with F(z) = exp(z)/(1+ exp(z)). The probability P of choosing the
mixing strategy s = j with j ∈ {0, 0.1, … , 1} is then

Pt(st = j) =P(𝛼j−0.1 < s∗
t ≤ 𝛼j) (8)

=F (𝛼j − 𝛽1I(qt, q)AB
t + 𝛽2I(qt, q)AB

t )

− F (𝛼j−0.1 − 𝛽1I(qt, q)AB
t + 𝛽2I(qt, q)AB

t )

where the threshold parameters 𝛼0 = −∞ and 𝛼1 = ∞. Thus, the parameters to
be estimated are 𝛽i, 𝜙, 𝛿, l and 𝛼0.1, … , 𝛼0.9 by maximising the log-likelihood⁹

ℒ = ∑
t

∑
j
I(st, j) lnPt(st = j). (9)

The decay parameter 𝜙, the weight on foregone payoffs 𝛿 and the loss weight
l are only identified if the sensitivities to the EWA learning model 𝛽1 and 𝛽2
are (significantly) positive and if the decay parameter 𝜙 lies in [0, 1]. In our
estimation, we therefore impose 𝛽i = exp( ̃𝛽i) and enforce the restriction on 𝜙
by applying a logistic transformation 𝜙 = 1/(1 + exp( ̃𝜙)).

8 We thank the editor, Frank Cowell, for pointing this out.
9 The R procedures (see R Development Core Team, 2010) that were used for the estimation can
be obtained from the authors upon request.
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4.2. Estimation results

To analyse loss aversion within an experience-weighted attraction framework
we estimate eight models with various restrictions on the parameters to assess
their separate impact on learning.

Our null-model includes only one treatment dummy so that it assumes a
constant bidding behaviour within each treatment, with a possibly different
constant behaviour in each treatment (as indicated by the normative solution). A
learning model must provide a better fit than the null-model before we consider
capturing any learning dynamics.

In a first learning model, we estimate equation (8) with the following con-
straints: l = 0, 𝛿 = 0 and 𝜅 = 0. Such restrictions reduce the EWA model to a
reinforcement learning model with profit discounting and no weight on fore-
gone payoffs. We will refer to this model as Model 1. In a second model (Model
2), we relax the restriction on the loss aversion parameter and estimate it freely.

In Model 3 and 4 we restrict the weight on foregone payoffs to 𝛿 = 1 and
keep 𝜅 = 0. Such restrictions reduce the EWAmodel to a reinforcement learning
model with profit discounting and equal weights of actual and foregone payoffs.
The loss aversion parameter l is restricted to l = 0 in Model 3 and is estimated
freely in Model 4.

The fifth model has been proposed by Ho et al. (2007) and assumes the
exploitation parameter 𝜅 to be a Gini coefficient on choice frequencies and, in
addition, that 𝛿 = 𝜙, which is reasonable given the stable strategic environment
of our individual decision-making experiment. The loss aversion parameter l is
restricted to l = 0 in Model 5 and is estimated freely in Model 6.

In Models 7 and 8, we assess whether the assumption 𝛿 = 𝜙 in Models 5
and 6 is valid for our data by estimating both parameters. This also allows us to
assess the importance of retrospective gains and losses for learning. The loss
aversion parameter l is restricted to l = 0 in Model 7 and freely estimated in
Model 8.

The estimation results for each of the 42 subjects involved and the represen-
tative agent are reported in Table 2 of the Appendix and lead to the following
observation:

Observation 4 A subject is said to learn according to some EWAmodel if this model
outperforms the null-model of constant behaviour (at the 1% significant level). Models 5
and 6 (inspired from Ho et al. 2007) identify 21 subjects (out of 42) as ‘learners’ whereas
Models 1 to 4 identify only 11 ‘learners’.

Subjects for which the EWAmodels do not indicate a significant learning
pattern correspond to those identified earlier with non-decreasing deviations
from the normative solution over time (cf. Observation 2 and Figure 5). For
these subjects the joint likelihood ratio tests do not unambiguously support
that 𝛽1 and 𝛽2 of equation (7) are significantly different from 0. The EWAmodel
parameters are therefore not identified and the corresponding subjects need to
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Figure 6: Distributions of estimated decay parameters 𝜙 in Models 2, 4, and 6.
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Figure 7: Distributions of estimated 𝜙 (decay) and 𝛿 (retrospective gains and
losses) in Model 7.

be discarded from further analysis.¹⁰
Let us first discuss the parameter 𝜙 that reflects the decay of previous at-

tractions. Notice that even though the bidding framework of our experiment is
highly stochastic, it remains stable throughout the experiment. We therefore do
not expect participants to discount past experiences, i.e. we expect 𝜙 to be close
to 1. This is supported by the data as the mean values of 𝜙 are 0.988 for Model 2
and 0.977 for Model 4.

Including retrospective gains and losses slightly decreases the decay param-
eter. Figure 6 further reveals that the distributions are all unimodal. As expected,
most participants who displayed a significant learning pattern did not discount
past experience. This is also reflected in the estimates for the representative
agent model that shows a 𝜙 estimate close to 0.99. The histograms for Models 6
and 7 (cf. Figures 6 and 7) reveal that tying the weight of retrospective gains and
losses 𝛿 to the decay parameter 𝜙 (Model 6) has a small positive effect on the
latter as the mean values of 𝜙 are 0.943 in Models 6 and 8 and 0.904 in Model 7.

10 These are the subjects with IDs 2, 3, 5, 7, 9, 10, 13, 15, 16, 18, 25–29, 33, 36, 38, 39, 41, 42 (cf.
Table 1).
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Figure 8: Distributions of estimated 𝜙 (decay) and 𝛿 (retrospective gains and
losses) in Model 8 that includes a loss weight.

This leads us to the questionwhether tying 𝛿 to𝜙 is a legitmate simplification
for our data. The left panel of Figure 7 shows the (joint) distribution of the
estimates for 𝛿 and 𝜙 in Model 7. Most observations lie in the upper right corner
of the joint distribution graph, confirming the intuition that both parameters
should be linked closely. There are, however, some exceptions. Appropriate
likelihood ratio tests show that 𝛿 = 𝜙 has to be rejected for only 6 (5) of the 21
individuals at the 5% (1%) level. The largest difference for which 𝛿 = 𝜙 cannot
be rejected is 0.672whereas the smallest difference that is rejected is 0.012. The
latter is certainly not economically relevant as two estimates that differ by such a
small amount are, for all matters of interpretation, equivalent. The clustering of
𝜙 and 𝛿 at 1 is even more pronounced in Model 8 that includes the loss weight l
(see Figure 8). For reasons of parsimony we consider the simplification 𝛿 = 𝜙
for our experimental data as legitimate. The estimations for the representative
agent, however, strongly contradicts this simplification because the estimated
coefficients are then 𝛿 = 0 and 𝜙 = 0.99.

Notice that although Model 1 (Model 2) has the same number of freely
estimated parameters asModel 3 (Model 4), it uses less information as it does not
take account of the bidder’s retrospective gains and losses (𝛿 = 0). Surprisingly,
however, a pairwise comparison of the models’ log-likelihoods reveals that the
fit of Model 1 (Model 2) is not substantially worse than the one of Model 3
(Model 4) (p > 0.148, according to one-sided t-tests). The EWAmodels (Models
5–8) introduced by Ho et al. (2007), however, perform considerably better than
all other versions of EWA learning in our experiment (p < 0.001).
Observation 5 A standard reinforcement-learning model like Model 1 (or Model 2)
explains the observed behaviour as effectively as the more sophisticated EWAmodels
such as Model 3 (or Model 4) that account for foregone payoffs. Still, controlling for the
growth rate of attractions further improves the fit of the model.

Finally, we assess the impact of loss aversion on learning in our experiment.
Figure 9 shows the distributions of the estimated loss weights in Models 2, 4, 6
and 8 (excluding for Model 2 one and for Models 6 and 8 two extreme values).
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Figure 9: Distributions of estimated loss weight l in Models 2, 4, 6, and 8.

In Model 2, which neglects retrospective gains and losses, the median value
of the loss aversion parameter l is 0.078; in Model 4, which weighs retrospective
gains and losses as much as actual ones, the median value of l is 0.241. In
both models the estimate is positive for 7 out of the 11 subjects for whom
the model is a significant improvement over the null-model. The loss aversion
parameter for the representative agent is −6.5 in Model 2 and 0.746 in Model
4. In Model 6, which links the weight of retrospective gains and losses 𝛿 to the
decay parameter 𝜙, and in Model 8, which allows both parameters to vary freely,
the median loss aversion parameter is 0.334 and the estimate is positive for
16 (in Model 6) and 15 (in Model 8) of the 21 subjects for whom the model
is a significant improvement over the null-model. Allowing for loss aversion
improves the model fit for 14 out of 21 individuals in both models. The loss
aversion parameter for the representative agent is −1.336 in Model 6 and 0.125
in Model 8. As reported in previous research (e.g., Wilcox, 2006, and Hichri and
Kirman, 2007), the estimates for the representative agent in our experiments do
not capture population heterogeneity and are thus seriously biased.

At last, the conduct of joint likelihood ratio tests indicates that including a
loss weight significantly improves the explanatory power of the simple rein-
forcement model as well as of the more sophisticated EWA models (at the 5%
level).

Observation 6 Accounting for loss aversion in EWA learning models significantly
improves their goodness-of-fit.

On average, we observe a tendency for losses to have a higher impact on
learning than gains. Yet, for some participants the opposite is true; they discount
losses. This may be explained by a house-money effect. Thaler and Johnson
(1990) find that under some circumstances a prior gain can increase subjects’
willingness to accept gambles. This finding is labelled the house money effect,
because gamblers often use the phrase “playing with the house money” to
express the feeling of gambling while ahead. The essence of the idea is that
until winnings are completely depleted, losses are coded as reductions of a gain,
as if losing some of “their money” does not hurt as much as losing one’s own
cash. In our experiment subjects had a generous endowment that fully covered
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potential losses and may have induced such a feeling. Further experimental
investigations would be needed to check explicitly how this endowment affects
subjects’ learning dynamics.

4.3. Estimation bias and power analysis

As our analysis and conclusions rely on the outcomes of likelihood ratio tests for
nested models, we proceed with assessing the power of this test regarding the
loss aversion parameter l. Like Salmon (2001),we are also particularly interested
in evaluating a potential estimation biaswith a series ofMonte-Carlo simulations.
This is important as Cabrales and Garcia-Fontes (2000) observed that some
EWA parameters are likely to be downward biased and often inaccurate if the
number of periods is too small.

For the Monte-Carlo simulations of our Models 5 and 6, we independently
draw the true parameter values of the sensitivities 𝛽1 and 𝛽2 and the decay
parameter 𝜙 from uniform distributions that cover the range of the observed
estimated parameters, i.e. 𝛽 ∈ (0, 0.1], 𝜙 ∈ [0.8, 1.0], and the weight on
retrospective gains and losses 𝛿 = 𝜙. The loss aversion parameter is set to
l ∈ {−1.4, −1.0, −0.6, −0.2, 0.2, 0.6, 1.0, 1.4}. For each value of l and different
lengths of play, i.e., series from 100 rounds up to 1000 rounds in steps of 100
rounds, we estimated our models for 200 independently simulated subjects.
This allows us to determine the power of the likelihood ratio test for the loss
parameter l and a possible estimation bias for different lengths of the experiment.
Such an exercise is important given our belief that the number of repetitions in
earlier studies has been too low to fully account for possible learning dynamics
or to estimate the impact of loss aversion in such a stochastic environment
where learning is typically very slow.

Figure 10 shows for each value of the loss parameter l, the mean, the median,
the 25% quantile, and the 75% quantile of the estimated loss parameter and the
power of the likelihood ratio test with H0 ∶ l = 0 at the 1% level.¹¹

The test’s power increases with the number of periods and the increase is
most rapid over the first 300 rounds of play. Interestingly, the power shows
more extreme values the smaller the magnitude of the loss parameter. For
l ∈ {−0.2, 0.2} the power is lower at small numbers of rounds and higher
at larger numbers of rounds than when the loss parameter is larger in absolute
terms. Additionally, the precision of the estimates depends inversely on the
true value of the loss parameter l. A larger value of the true loss parameter leads
to a higher variance in its estimate as indicated by the interquartile range. The
interquartile range decreases with the number of rounds, indicating that longer
periods of play and therefore more data points lead to more precise estimates.
However, after about 500 periods the interquartile range seems to be rather

11 A significant likelihood ratio test for one simulation adds only to the power if the sign of the
estimated loss parameter is correct too.
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Figure 10: Estimation bias for loss parameter l and power analysis of test for loss
aversion H0: l = 0 vs. H1: l ≠ 0
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stable. Therefore, our choice of conducting the experiment with 500 rounds is ex
post justified by the results of the simulations. While shorter experiments would
have yielded a much lower power and might have led to erroneous conclusions,
i.e. not detecting the significance of loss aversion, we would not have gained
much power or estimation precision with longer experiments.

The point estimates show a further noteworthy pattern. If the number of
periods is small, absolute median and mean point estimates of the loss aversion
parameter are slightly larger in magnitude than their true values. For longer
periods of play we observe, however, a regression to zero, i.e. the true absolute
effect size is under-estimated for most lengths of play.

In conclusion, even though our significance tests are quite powerful, point
estimates of the loss aversion parameter are slightly downward biased in mag-
nitude. This leads to a rather conservative assessment of the impact of loss
aversion on learning dynamics in our paper.

5. Conclusion
One of the most robust findings of auction experiments is the winner’s curse
in common value auctions. However, all reasonable adaptation or learning
dynamics suggest that ‘winners’ should learn to update their profit expectations
more properly. In the bilateral trade situation at hand, the winner’s curse means
that the buyer neglects that the price of B will be accepted only if it exceeds the
seller’s evaluation of the asset (qv), i.e. only if the value v is smaller than B/q.
Our experiment is designed in a way rendering it optimal for the buyer, in terms
of expected revenues, to abstain from bidding B when the seller’s quota (q) is
high and to bid B with probability one when it is low.

Although we have provided ample opportunity for learning (250 rounds for
each q-regime), bidding B with a positive probability when the seller’s quota
is high remains a strong pattern throughout the experiment and weakens only
slightly over time. In our view, this ex post justifies the relatively large number
of rounds of play. Our expectation that learning in stochastic environments can
be rather slow is confirmed at least for the case when one should abstain from
bidding. In contrast, learning to bid B with probability one when the seller’s
quota is low was much faster. This is also in line with the size of the financial
incentives. The expected gain for bidding B when the seller’s quota q is low is
larger than the absolute expected loss for bidding B when the seller’s quota is
high. Bidding B is more profitable for the lower quota than abstaining is for the
high one, and is therefore reinforced more strongly. The finding for low and
high quotas together seem to show that whether learning is fast or slow does not
depend on the general environment but whether one should learn omitting (to
bid) or committing (to bid) which, in turn, depends here finally on a numerical
parameter, namely the quota of lower evaluation by the seller.

In general, although we have reduced the bidding task to its simplest ex-
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pression by removing confounding effects such as bidders’ strategic interaction,
it still seems to be quite a challenge for individuals to learn bidding optimally.
We observe considerable individual heterogeneity of learning dynamics, and
there is only a small fraction of people who almost instantaneously converge
to optimal bidding. Moreover, learning to avoid the winner’s curse seems to
be rather weak. Either participants understand sooner or later that bidding is
dangerous when q is high, or never recognise it clearly and are only slightly
discouraged by (the more frequent) loss experiences.

Important conclusions concerning learning are that (1) loss aversion influ-
ences the individual learning dynamics but is highly heterogeneous, and (2)
even though retrospective gains and losses have some influence on learning
to bid their impact seems rather minor. Finally, we have shown that (3) loss
aversion does not seem to be specific to rare decision making.

Acknowledgements
We are grateful for the assistance of Ben Greiner who helped in programming
the experiment.

References
Agresti, A., 2010, Analysis of ordinal

categorical data, Hoboken: John Wiley
et Sons.

Anderhub V., D. Engelmann and W. Güth ,
2002, An experimental study of the
repeated trust game with incomplete
information, Journal of Economic
Behavior and Organization, 48,
197-216.

Armantier O., 2004, Does observation
influence learning? Games and
Economic Behavior, 46, 221-239.

Avrahami J., W. Güth and Y. Kareev, 2001,
Predating predators: An experimental
study, Homo Oeconomicus, 18,
337-352.

Becker G.M., M.H. de Groot and J. Marshak,
1964, Measuring utility by a
single-response sequential method,
Behavioral Science, 9, 226-232.

Ball S.B., M.H. Bazerman and J.S. Carroll ,
1991, An evaluation of learning in the
bilateral winner’s curse, Organizational
Behavior and Human Decision
Processes, 48, 1-22.

Bazerman M.H. and W.F. Samuelson, 1983, I
won the auction but don’t want the
prize, Journal of Conflict Resolution,
27, 618-634.

Benartzi S. and R.H. Thaler, 1995, Myopic
loss aversion and the equity premium
puzzle, Quarterly Journal of
Economics, 110, 73-92.

Bush R. and F. Mosteller, 1955, Stochastic
models for learning, New York: Wiley.

Cabrales, A. and W. Garcia-Fontes, 2000,
Estimating learning models from
experimental data, Working Paper,
Universitat Pompeu Fabra 501.

Camerer, C., 2003, Behavioral Game Theory,
Princeton: Princeton University Press.

Camerer, C. and T.-K. Ho, 1999,
Experience-weighted attraction (EWA)
learning in normal-form games,
Econometrica, 67, 827-873.

Charness, G. and D. Levin, 2009, The origin
of the winner’s curse: A laboratory
study, American Economic Journal:
Microeconomics, 1: 207-36.

24



Loss aversion and learning to bid

Fischbacher U., 2007, z-Tree - Zurich toolbox
for readymade economic experiments -
experimenter’s manual. Experimental
Economics, 10, 171-178.

Gandenberger O., 1961, Die Ausschreibung,
Heidelberg: Quelle und Meyer.

Garvin S. and J. Kagel, 1994, Learning in
common value auctions: Some initial
observations, Journal of Economic
Organization and Behavior, 25,
351-372.

Gneezy U. and J. Potters, 1997, An
experiment on risk taking and
evaluation periods, Quarterly Journal
of Economics, 112, 631-645.

Güth W., R. Ivanova-Stenzel, M. Königstein
and M. Strobel, 2003, Learning to bid –
An experimental study of bid function
adjustments in auctions and fair
division games, Economic Journal, 103,
477-494.

Hichri W. and A. Kirman, 2007, The
emergence of coordination in public
good games, European Physical
Journal B, 55, 2, 149-159.

Ho T.-K., C. Camerer and J.-K. Chong, 2007,
Self-tuning experience weighted
attraction learning in games, Journal of
Economic Theory, 133, 177-198.

Ho T.-K., X. Wang and C. Camerer, 2008,
Individual differences in EWA learning
with partial payoff information,
Economic Journal, 118, 37-59.

E. Johnson, S. Gächter and B. Herrmann,
2006, Exploring the nature of loss
aversion, CeDEx Discussion Paper No.
2006-02, University of Nottingham.

Kagel J., 1995, Auctions: A survey of
experimental research; in J. Kagel and
A. Roth (eds.), The Handbook of
Experimental Economics, Cambridge,
MA: MIT Press.

Kahneman D. and A. Tversky, 1979, Prospect
theory: An analysis of decision under
risk, Econometrica, 47, 263-91.

Langer T. and M.Weber, 2005, Myopic
prospect theory vs. myopic loss
aversion: how general is the
phenomenon?, Journal of Economic
Behavior and Organization, 56, 25-38.

Nagel R. and F. Tang, 1998, Experimental
results on the centipede game in
normal form: an investigation on
learning, Journal of Mathematical
Psychology, 42, 356-84.

Ochs J., 1995, Games with unique, mixed
strategy equilibria: An experimental
study, Games and Economic Behavior,
10, 202-217.

Ockenfels, A. and R. Selten, 2005, Impulse
Balance Equilibrium and Feedback in
First Price Auctions, Games and
Economic Behavior, 51, 155-170.

R Development Core Team, 2010, R: A
language and environment for
statistical computing, Vienna, Austria:
R Foundation for Statistical
Computing.

Roth A.E. and I. Erev, 1998, Predicting how
people play games: Reinforcement
learning in experimental games with
unique, mixed strategy equilibria,
American Economic Review, 88,
848-880.

Salmon, T., 2001, An evaluation of
econometric models of adaptive
learning, Econometrica, 69, 1597-628.

Samuelson W.F. and M.H. Bazerman, 1985,
The winner’s curse in bilateral
negotiations; in V.L. Smith (ed.):
Research in Experimental Economics,
Greenwich: JAI Press, 3, 105-137.

Starmer C., 2000, Developments in
non-expected utility theory: The hunt
for a descriptive theory of choice under
risk, Journal of Economic Literature,
38, 332-382.

Selten R., K. Abbink and R. Cox, 2005,
Learning direction theory and the
winner’s curse, Experimental
Economics, 8(1), 5-20.

Selten R. and J. Buchta, 1998, Experimental
sealed bid first price auctions with
directly observed bid functions; in O.D.
Budescu, I. Erev and R. Zwick (eds.),
Games and Human Behavior – Essays
in Honor of Amon Rapoport, Mahwah
(N.J.): Lawrence Erlbaum Ass.

25



Loss aversion and learning to bid

Thaler, R. H., and E. J. Johnson, 1990,
Gambling with the house money and
trying to break even: The effects of
prior outcomes on risky choice,
Management Science, 36, 643-660.

Tversky A. and D. Kahneman, 1992,
Advances in prospect theory:
Cumulative representation of

uncertainty, Journal of Risk and
Uncertainty, 5, 297-323.

Vickrey W., 1961, Counterspeculation,
auctions, and competitive sealed
tenders, Journal of Finance, 16, 8-37.

Wilcox, N., 2006, Theories of learning in
games and heterogeneity bias,
Econometrica, 74, 1271-1292.

A. Software Screen

Figure 11: Computer screen

Figure 11 displays the decision screen. It features feedback information from
the previous round, the round number, earnings, the prevalent q, the mixed
strategy choice and a calculator symbol that opens a calculator window.
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B. Instructions (originally in German)
Welcome to the experiment!

Please do not speak with other participants from now on.
Instructions
This experiment is designed to study decision making. You can earn ‘real’

money, which will be paid to you in cash at the end of the experiment. The
‘experimental currency unit’ will be ‘experimental points (EP)’. EP will be con-
verted to Euro according to the exchange rate in the instructions. During the
experiment you and other participants will be asked to take decisions. Your
decisions will determine your earnings according to the instructions. All partici-
pants receive identical instructions. If you have any questions after reading the
instructions, raise your hands. One of the experimenters will come to you and
answer them privately. The experiment will last for 2 hours maximum.

Roles
You are in the role of the buyer; the role of the seller is captured by a robot

strategy of the computer. The computer follows an easy strategy that will be
fully described below.

Stages
At the beginning of each round you can decide whether you want to ‘bid’

for a good or abstain. For this you can apply a special procedure that we will
introduce in a moment. Your bid B is always 25 EP. The value of the good v
will be determined independently and by chance move in every round. v is
always between (and including) 0 EP and 100 EP. The chosen values are equally
distributed, which means that every integer number between (and including) 0
EP and 100 EP is the value of the good with equal probability. The computer as
the seller only sells the good when the bid is higher than the value multiplied
by a factor q.

Mathematically, the computer only sells if B > qv.
The factor q takes on the values 0.4 or 0.6.At the beginning of each round you

will be informed about the value of q in that round. Every 10 rounds q changes.
Keep in mind that you are the only potential buyer of the good. Therefore, this
is a very special case of an auction.

Special procedure to choose to bid or to abstain
The choice between bidding or abstaining is made by assigning balls to

the two possibilities. You have 10 balls that have to be assigned to the two
possibilities. The number of assigned balls corresponds with the probability
that a possibility is chosen. Thus, each ball corresponds with a probability of
10 percent. All possible distributions of the 10 balls to the two possibilities are
allowed.

Information at the end of each round
At the end of each round you receive information on the value v, whether

the good was sold by the computer (or whether the good would have been sold
in case you had bid). Additionally, you see your round profit.
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Profit

• If you did not bid, your round profit is 0.

• If the bid was smaller than the value of the good multiplied by the factor
(B < qv), the computer does not sell. No transaction takes place and your
round profit is 0.

• If you bid and B > qv, then your round profit depends on the value of the
good. In case of a value of the good that is higher than the bid v > B, you
make a profit. In case of a value of the good that is lower than the bid,
you make a loss in that round. Losses in single rounds can, of course, be
balanced by profits from other rounds.

At the beginning of the experiment you receive an endowment of 1500 EP.
At the end of the experiment, experimental points will be exchanged at a rate of
1:200. That means 200 EP = 1 Euro.

Rounds
There are 500 rounds in the experiment. In each round you have to take the

same decision (assign the balls to the two possibilities of bidding or abstaining)
as explained above. Only factor q will be changed every 10 rounds.

Means of help
You find a calculator on your screen. You are, of course, allowed to write

notes on the instruction sheets.
Thank you for participating!

C. Estimation Results
In Table 2 each block of nine lines shows the estimation results for one subject.
Line 1 is the Null-Model. In lines 2 – 9 follow the different EWA models in the
order discussed in the paper: In lines 2 and 3 𝛿 = 0, in lines 4 and 5 𝛿 = 1, in
lines 6 and 7 𝛿 = 𝜙, and in line 9 all parameters are freely estimated. In the last
column of lines 3, 5, 7, and 9 the p-value of the likelihood ratio test with H0:
l = 0 is reported. In Line 8 l = 0, the p-value of the likelihood ratio test with H0:
𝛿 = 𝜙 is reported in the last column.

28



Loss aversion and learning to bid

Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

1 7.275 -0.012 -778.36
<0.001 <0.001 1.000 -778.37 1.000
0.002 0.001 1.000 -46.817 -777.96 0.667 0.367

<0.001 <0.001 1.000 -778.37 1.000
<0.001 0.092 0.841 -0.857 -777.48 0.414 0.183
0.023 0.049 0.001 -772.02 <0.001
0.023 0.045 <0.001 0.101 -771.91 0.002 0.630
0.023 0.048 <0.001 0.211 -771.87 0.002 0.574
0.022 0.033 <0.001 0.913 0.998 -771.25 0.003 0.253

2 -17.733 53.092 -13.04
0.009 356.008 1.000 -59.86 1.000
0.745 353.519 1.000 -4.036 -21.25 1.000 <0.001

<0.001 168.643 1.000 -13.03 0.985
0.025 179.09 1.000 0.459 -14.92 1.000 1.000
0.008 2.233 1.000 -36.65 1.000
0.517 <0.001 0.804 -1.740 -21.26 1.000 <0.001
0.007 3.791 0.993 1.000 -14.09 1.000 <0.001
0.617 <0.001 0.830 -1.549 0.100 -8.46 0.027 <0.001

3 7.882 0.069 -1118.74
<0.001 0.104 1.000 -1118.34 0.372
0.006 0.068 0.252 0.651 -1107.95 <0.001 <0.001
0.014 0.021 1.000 -1118.53 0.523
0.002 <0.001 1.000 -12.478 -1118.37 0.695 0.572

<0.001 <0.001 1.000 -1118.83 1.000
<0.001 <0.001 1.000 13.157 -1118.83 1.000 0.959
<0.001 <0.001 1.000 1.000 -1118.83 1.000 0.992
<0.001 <0.001 1.000 32.403 1.000 -1118.50 0.922 0.411

4 3.236 4.096 -855.30
1.502 <0.001 1.000 -857.21 1.000
1.063 <0.001 1.000 -0.645 -825.29 <0.001 <0.001
1.249 <0.001 0.998 -831.27 <0.001
0.925 <0.001 0.992 -0.305 -824.02 <0.001 <0.001
0.007 0.032 0.998 -756.61 <0.001
0.011 0.029 0.996 0.601 -744.25 <0.001 <0.001
0.006 0.058 1.000 0.227 -746.98 <0.001 <0.001
0.010 0.037 1.000 0.652 0.177 -738.23 <0.001 0.001

5 6.846 -0.130 -884.02
<0.001 <0.001 1.000 -884.35 1.000
<0.001 <0.001 1.000 45.511 -884.34 1.000 0.888
<0.001 <0.001 1.000 -884.35 1.000
0.004 0.007 1.000 25.135 -883.52 0.609 0.200

<0.001 0.001 1.000 -884.27 1.000
<0.001 <0.001 1.000 56.855 -883.88 0.869 0.376
<0.001 0.001 1.000 1.000 -884.27 1.000 1.000
<0.001 <0.001 1.000 65.241 1.000 -883.75 0.910 0.609
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

6 3.179 1.234 -832.96
0.161 2.038 1.000 -795.41 <0.001

<0.001 1.404 1.000 0.511 -790.70 <0.001 0.002
0.202 1.395 1.000 -798.69 <0.001

<0.001 1.111 1.000 0.632 -789.53 <0.001 <0.001
0.001 0.030 1.000 -781.78 <0.001

<0.001 0.019 1.000 0.255 -777.58 <0.001 0.004
0.001 0.030 1.000 1.000 -781.78 <0.001 0.991

<0.001 0.019 1.000 0.255 1.000 -777.58 <0.001 0.996
7 5.600 0.064 -1056.00

0.049 <0.001 0.908 -1054.33 0.068
0.175 <0.001 1.000 2.401 -1051.22 0.008 0.013
0.028 <0.001 0.718 -1054.23 0.060
0.152 <0.001 1.000 1.539 -1052.82 0.042 0.093
0.012 <0.001 0.839 -1053.62 0.029
0.010 <0.001 0.900 0.914 -1053.39 0.074 0.498
0.012 <0.001 0.824 0.999 -1053.61 0.092 0.884
0.011 <0.001 0.898 0.973 1.000 -1053.27 0.141 0.615

8 8.628 0.337 -759.83
1.029 <0.001 0.992 -679.08 <0.001
1.035 <0.001 0.992 0.122 -676.48 <0.001 0.023
0.271 <0.001 0.983 -743.59 <0.001
0.679 0.129 0.993 0.702 -702.09 <0.001 <0.001
0.009 <0.001 1.000 -693.44 <0.001
0.044 <0.001 1.000 0.464 -672.25 <0.001 <0.001
0.009 <0.001 1.000 1.000 -693.44 <0.001 0.963
0.044 <0.001 1.000 0.464 1.000 -672.25 <0.001 0.990

9 63.475 7.556 <0.001
4.5e+27 0.102 1.000 <0.001 1.000
4.3e+37 0.892 1.000 -3.220 <0.001 1.000 1.000
4.5e+27 0.102 1.000 <0.001 1.000
4.3e+37 0.892 1.000 -3.220 <0.001 1.000 1.000
8.8e+28 0.008 1.000 <0.001 1.000
4.0e+54 0.001 0.996 -4.339 <0.001 1.000 1.000
8.8e+28 0.008 1.000 1.000 <0.001 1.000 1.000
4.0e+54 0.001 0.996 -4.339 0.996 <0.001 1.000 1.000

10 5.895 0.127 -413.33
0.030 <0.001 1.000 -413.39 1.000

<0.001 <0.001 1.000 129.953 -413.55 1.000 1.000
0.015 <0.001 1.000 -413.49 1.000

<0.001 0.002 0.992 20.205 -413.41 1.000 0.687
0.001 <0.001 1.000 -410.78 0.024

<0.001 <0.001 1.000 -35.927 -408.33 0.007 0.027
0.001 <0.001 1.000 1.000 -410.78 0.078 1.000

<0.001 <0.001 1.000 -48.684 1.000 -407.37 0.008 0.166
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

11 6.490 3.944 -491.96
0.813 1.719 0.986 -498.83 1.000
0.763 <0.001 0.997 -1.491 -497.10 1.000 0.063
0.609 0.847 0.999 -474.69 <0.001
0.377 1.236 0.991 0.796 -460.62 <0.001 <0.001
0.005 0.019 0.994 -464.03 <0.001
0.009 0.015 0.993 0.457 -457.71 <0.001 <0.001
0.007 0.027 0.992 0.558 -463.17 <0.001 0.188
0.009 0.015 0.993 0.458 1.000 -457.68 <0.001 0.813

12 3.811 0.318 -404.82
0.019 0.073 1.000 -405.67 1.000

<0.001 0.018 1.000 3.843 -405.64 1.000 0.782
0.020 0.120 1.000 -404.87 1.000

<0.001 <0.001 1.000 -429.747 -404.32 0.606 0.293
<0.001 0.003 1.000 -398.40 <0.001
<0.001 <0.001 1.000 34.570 -393.05 <0.001 0.001
<0.001 0.003 1.000 1.000 -398.40 0.002 0.998
<0.001 <0.001 1.000 67.624 1.000 -388.74 <0.001 0.003

13 2.648 0.170 -1014.13
<0.001 0.035 <0.001 -1012.94 0.122
<0.001 0.001 <0.001 51.086 -1010.89 0.039 0.043
0.017 0.015 0.606 -1013.70 0.354

<0.001 0.001 <0.001 38.704 -1011.79 0.096 0.050
<0.001 0.035 <0.001 -1012.94 0.122
0.001 0.002 <0.001 26.636 -1010.94 0.041 0.046

<0.001 0.035 <0.001 <0.001 -1012.94 0.303 0.995
0.001 0.001 <0.001 35.254 <0.001 -1010.91 0.092 0.811

14 5.171 1.485 -999.07
0.227 0.349 1.000 -1002.52 1.000
0.223 0.046 1.000 -1.286 -1000.23 1.000 0.033
0.180 0.114 1.000 -1004.83 1.000
0.106 <0.001 1.000 -2.033 -1003.39 1.000 0.090
0.017 <0.001 0.975 -990.17 <0.001
0.016 <0.001 0.985 0.350 -988.65 <0.001 0.082
0.018 <0.001 0.976 0.460 -989.70 <0.001 0.331
0.016 <0.001 0.985 0.351 1.000 -988.65 <0.001 0.910

15 6.434 -0.233 -907.49
<0.001 0.719 1.000 -903.32 0.004
<0.001 1.373 1.000 -0.253 -900.55 0.001 0.019
<0.001 0.213 1.000 -907.36 0.614
0.040 0.067 0.992 20.047 -882.76 <0.001 <0.001

<0.001 0.011 <0.001 -908.28 1.000
<0.001 <0.001 <0.001 82.059 -907.67 1.000 0.268
<0.001 0.012 <0.001 1.000 -908.18 1.000 0.645
<0.001 <0.001 <0.001 103.425 1.000 -907.26 0.926 0.364
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

16 5.349 0.295 -385.11
<0.001 0.194 1.000 -385.38 1.000
<0.001 0.006 1.000 28.159 -384.74 0.688 0.257
<0.001 0.127 1.000 -385.82 1.000
<0.001 <0.001 1.000 -234.438 -383.87 0.287 0.048
0.001 <0.001 1.000 -382.66 0.027

<0.001 <0.001 1.000 24.200 -386.06 1.000 1.000
0.001 <0.001 1.000 1.000 -381.87 0.039 0.210

<0.001 <0.001 1.000 24.200 1.000 -386.06 1.000 1.000
17 4.516 -0.130 -970.68

<0.001 1.026 0.977 -939.37 <0.001
0.148 3.025 0.992 -0.741 -902.03 <0.001 <0.001

<0.001 0.580 0.977 -947.24 <0.001
0.055 1.507 0.993 -0.835 -919.52 <0.001 <0.001
0.003 <0.001 1.000 -956.84 <0.001
0.003 0.018 1.000 -1.664 -837.14 <0.001 <0.001
0.003 <0.001 1.000 1.000 -956.84 <0.001 0.999
0.003 0.018 1.000 -1.663 1.000 -837.14 <0.001 0.996

18 5.404 -0.767 -897.27
<0.001 <0.001 1.000 -908.26 1.000
<0.001 0.927 1.000 -0.707 -899.39 1.000 <0.001
<0.001 <0.001 1.000 -908.26 1.000
0.001 <0.001 1.000 173.948 -901.18 1.000 <0.001

<0.001 <0.001 1.000 -908.26 1.000
<0.001 <0.001 1.000 -10.334 -908.26 1.000 0.989
<0.001 <0.001 1.000 1.000 -908.26 1.000 0.992
<0.001 <0.001 0.999 -18.105 1.000 -887.96 <0.001 <0.001

19 0.624 27.315 -39.84
0.066 356.131 1.000 -66.88 1.000
0.553 354.179 0.999 -6.767 -65.09 1.000 0.058
0.659 2.870 1.000 -97.55 1.000
0.374 <0.001 1.000 -21.775 -48.06 1.000 <0.001
0.654 0.082 1.000 -7.17 <0.001
0.776 1.408 1.000 0.812 -7.31 <0.001 1.000
0.654 0.082 1.000 1.000 -7.17 <0.001 0.999
0.686 0.122 1.000 0.489 1.000 -7.09 <0.001 0.503

20 7.131 3.960 -712.69
0.529 1.024 1.000 -758.12 1.000
0.141 <0.001 1.000 -8.595 -721.49 1.000 <0.001
0.468 0.905 0.992 -739.90 1.000
0.175 <0.001 1.000 -4.170 -735.15 1.000 0.002
0.020 0.019 0.991 -628.46 <0.001
0.022 0.017 0.991 0.175 -627.80 <0.001 0.251
0.018 0.029 0.993 0.342 -625.83 <0.001 0.022
0.019 0.027 0.993 0.047 0.352 -625.80 <0.001 0.046
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

21 2.638 -0.494 -1153.48
0.171 <0.001 0.803 -1135.41 <0.001
0.172 <0.001 0.815 0.278 -1135.17 <0.001 0.491
0.040 0.023 0.749 -1155.39 1.000
0.164 0.036 0.834 1.789 -1107.15 <0.001 <0.001
0.037 0.006 0.116 -1152.99 0.320
0.049 0.016 0.880 1.859 -1104.76 <0.001 <0.001
0.064 <0.001 0.793 <0.001 -1139.93 <0.001 <0.001
0.051 0.017 0.865 1.793 1.000 -1102.44 <0.001 0.031

22 2.748 2.915 -976.05
<0.001 4.274 1.000 -954.46 <0.001
<0.001 4.137 1.000 0.026 -954.40 <0.001 0.729
<0.001 1.689 1.000 -955.43 <0.001
<0.001 1.468 1.000 0.185 -954.24 <0.001 0.124
0.012 <0.001 1.000 -940.23 <0.001
0.007 0.054 1.000 -0.750 -901.02 <0.001 <0.001
0.012 <0.001 1.000 1.000 -940.23 <0.001 0.990
0.007 0.054 1.000 -0.750 1.000 -901.02 <0.001 1.000

23 9.262 -0.202 -553.50
0.066 <0.001 0.838 -549.80 0.007
0.392 0.018 1.000 1.926 -535.51 <0.001 <0.001
0.078 <0.001 0.901 -549.45 0.004
0.406 0.018 1.000 1.582 -536.52 <0.001 <0.001
0.007 <0.001 0.925 -549.61 0.005

<0.001 0.001 1.000 -22.401 -380.07 <0.001 <0.001
0.007 <0.001 0.927 1.000 -549.58 0.020 0.821

<0.001 <0.001 1.000 -26.867 1.000 -380.03 <0.001 0.764
24 6.481 0.609 -908.79

<0.001 1.355 0.975 -879.72 <0.001
<0.001 1.207 0.973 0.078 -879.53 <0.001 0.533
<0.001 0.942 0.965 -836.43 <0.001
<0.001 1.176 0.975 -0.257 -833.72 <0.001 0.020
0.003 <0.001 1.000 -894.50 <0.001
0.003 <0.001 1.000 0.147 -894.50 <0.001 0.896
0.003 <0.001 1.000 1.000 -894.50 <0.001 0.970
0.003 <0.001 1.000 0.146 1.000 -894.49 <0.001 0.967

25 4.023 0.115 -327.86
<0.001 0.397 1.000 -325.26 0.022
<0.001 <0.001 1.000 1224.621 -326.83 0.358 1.000
<0.001 0.273 1.000 -325.25 0.022
0.050 0.073 1.000 7.213 -321.89 0.003 0.010
0.006 0.061 0.376 -321.64 <0.001

<0.001 <0.001 <0.001 124.900 -325.35 0.081 1.000
0.022 0.086 0.017 1.000 -311.53 <0.001 <0.001

<0.001 0.001 <0.001 48.927 <0.001 -325.03 0.130 0.424
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

26 9.806 128.212 -31.01
4.455 <0.001 1.000 -75.88 1.000

5.4e+29 <0.001 1.000 -0.632 -31.01 1.000 <0.001
2.468 4.357 1.000 -60.27 1.000

3.5e+32 <0.001 1.000 -0.536 -31.01 1.000 <0.001
0.144 0.056 1.000 -43.08 1.000

1.0e+28 <0.001 0.954 -5.261 -31.01 1.000 <0.001
0.144 0.056 1.000 1.000 -43.08 1.000 0.999

1.0e+28 <0.001 0.954 -5.261 0.954 -31.01 1.000 1.000
27 63.475 7.556 <0.001

8.9e+36 0.612 1.000 <0.001 1.000
4.5e+64 1.285 1.000 0.462 <0.001 1.000 1.000
8.9e+36 0.612 1.000 <0.001 1.000
4.5e+64 1.285 1.000 0.462 <0.001 1.000 1.000

5.5e+106 <0.001 1.000 <0.001 1.000
2.9e+109 <0.001 1.000 -1.066 <0.001 1.000 1.000
5.5e+106 <0.001 1.000 1.000 <0.001 1.000 1.000
2.9e+109 <0.001 1.000 -1.066 1.000 <0.001 1.000 1.000

28 15.562 1.402 -33.68
<0.001 1.532 1.000 -26.98 <0.001
<0.001 1.521 1.000 0.009 -26.98 0.001 0.984
<0.001 1.532 1.000 -26.98 <0.001
<0.001 1.522 1.000 0.008 -26.98 0.001 0.989
0.022 <0.001 <0.001 -34.54 1.000

1206373.459 <0.001 <0.001 -18.946 -32.78 0.406 0.060
0.022 <0.001 <0.001 <0.001 -34.54 1.000 0.998

3777953.293 <0.001 <0.001 -17.804 <0.001 -32.78 0.614 1.000
29 5.949 1.389 -921.43

0.425 <0.001 1.000 -933.07 1.000
0.287 <0.001 1.000 -0.718 -920.41 0.363 <0.001
0.434 <0.001 1.000 -930.64 1.000
0.242 <0.001 0.938 -0.858 -911.78 <0.001 <0.001
0.006 <0.001 0.999 -932.58 1.000

<0.001 <0.001 0.998 -22.059 -927.71 1.000 0.002
0.008 <0.001 0.996 0.459 -932.01 1.000 0.285
0.028 0.030 0.912 -1.311 0.284 -915.62 0.009 <0.001

30 5.081 -0.071 -490.81
0.026 0.063 0.281 -486.52 0.003
0.143 0.256 1.000 -4.992 -475.68 <0.001 <0.001
0.028 0.072 0.284 -484.66 <0.001
0.065 <0.001 1.000 2.512 -490.15 0.516 1.000
0.022 0.048 0.395 -485.51 0.001
0.005 0.018 0.977 -1.593 -475.83 <0.001 <0.001
0.023 0.053 0.327 1.000 -484.29 0.001 0.119
0.008 0.064 0.981 -0.872 <0.001 -464.14 <0.001 <0.001
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

31 5.949 4.335 -494.49
0.662 <0.001 1.000 -596.37 1.000
0.163 0.042 1.000 -7.671 -501.93 1.000 <0.001
0.433 0.303 1.000 -588.14 1.000
0.173 0.050 1.000 -6.328 -511.32 1.000 <0.001
0.008 0.015 1.000 -439.01 <0.001
0.009 0.014 1.000 0.146 -438.59 <0.001 0.359
0.008 0.015 1.000 1.000 -439.01 <0.001 1.000
0.009 0.014 1.000 0.146 1.000 -438.59 <0.001 1.000

32 7.061 1.762 -466.98
0.415 <0.001 0.99 -455.57 <0.001
0.531 <0.001 1.000 0.769 -455.43 <0.001 0.589
0.241 0.681 0.990 -451.20 <0.001
0.298 1.114 0.991 -0.647 -447.71 <0.001 0.008
0.010 0.017 0.975 -457.97 <0.001
0.010 0.005 0.990 0.920 -454.36 <0.001 0.007
0.002 0.020 0.988 1.000 -454.21 <0.001 0.006
0.004 0.005 0.995 1.758 1.000 -444.44 <0.001 <0.001

33 11.093 1.191 -384.41
0.379 0.210 1.000 -390.16 1.000
0.033 <0.001 1.000 -12.326 -384.69 1.000 0.001
0.275 0.179 1.000 -387.94 1.000
0.019 <0.001 1.000 -15.445 -384.97 1.000 0.015

<0.001 <0.001 <0.001 -399.38 1.000
<0.001 0.061 <0.001 -1.763 -397.50 1.000 0.052
<0.001 <0.001 0.001 0.001 -399.38 1.000 0.999
<0.001 0.074 <0.001 -1.493 0.574 -396.47 1.000 0.151

34 3.073 1.920 -905.29
0.169 0.348 1.000 -917.22 1.000
0.088 <0.001 1.000 -12.164 -898.70 0.001 <0.001
0.116 0.246 1.000 -917.36 1.000
0.007 <0.001 1.000 -74.548 -909.70 1.000 <0.001
0.009 <0.001 0.991 -878.00 <0.001
0.014 <0.001 1.000 1.150 -871.33 <0.001 <0.001
0.013 0.004 0.988 <0.001 -874.16 <0.001 0.006
0.012 <0.001 1.000 1.368 0.022 -870.16 <0.001 0.126

35 5.663 1.935 -441.40
<0.001 1.201 0.985 -434.55 <0.001
<0.001 0.917 0.987 0.288 -434.09 0.001 0.336
0.068 0.623 0.984 -441.59 1.000
0.045 <0.001 0.912 -13.658 -445.55 1.000 1.000
0.006 0.003 0.992 -431.96 <0.001
0.003 0.005 0.998 0.584 -432.43 <0.001 1.000
0.003 0.006 1.000 <0.001 -425.30 <0.001 <0.001
0.003 0.013 1.000 -0.250 <0.001 -425.16 <0.001 <0.001
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

36 3.653 2.468 -887.44
0.039 1.601 1.000 -886.44 0.158
0.050 4.613 1.000 -0.486 -879.49 <0.001 <0.001
0.184 0.692 1.000 -908.45 1.000
0.134 <0.001 0.978 -4.269 -874.15 <0.001 <0.001
0.011 <0.001 0.986 -903.45 1.000
0.007 <0.001 0.956 -4.881 -881.38 0.002 <0.001
0.011 <0.001 0.986 1.000 -903.41 1.000 0.765
0.011 <0.001 0.949 -3.921 0.284 -879.13 0.001 0.034

37 4.912 5.346 -160.06
1.195 <0.001 1.000 -217.91 1.000

<0.001 <0.001 1.000 -4822.192 -382.81 1.000 1.000
0.595 0.898 1.000 -195.69 1.000
0.850 1.683 1.000 -1.563 -134.06 <0.001 <0.001
0.002 0.038 1.000 -85.42 <0.001
0.002 0.143 1.000 -0.715 -82.87 <0.001 0.024
0.003 0.037 1.000 1.000 -85.00 <0.001 0.359
0.002 0.143 1.000 -0.715 1.000 -82.87 <0.001 1.000

38 10.228 -2.658 -420.13
<0.001 <0.001 0.296 -478.73 1.000
<0.001 <0.001 <0.001 567.432 -478.72 1.000 0.971
<0.001 <0.001 0.029 -478.73 1.000
<0.001 <0.001 1.000 28.945 -478.73 1.000 1.000
<0.001 <0.001 0.619 -478.73 1.000
<0.001 <0.001 <0.001 44.321 -478.72 1.000 0.957
<0.001 <0.001 <0.001 1.000 -478.72 1.000 0.945
<0.001 <0.001 0.034 41.516 <0.001 -478.72 1.000 0.973

39 14.644 41.497 -35.41
1.6e+30 <0.001 1.000 -35.41 1.000
8.3e+36 <0.001 1.000 0.397 -35.41 1.000 0.994
3.4e+23 <0.001 1.000 -35.41 1.000
9.0e+29 <0.001 1.000 0.368 -35.41 1.000 0.993
3.5e+37 <0.001 1.000 -35.41 1.000
2.9e+53 <0.001 1.000 -0.955 -35.41 1.000 0.998
3.5e+37 <0.001 1.000 1.000 -35.41 1.000 1.000
3.9e+58 <0.001 1.000 0.397 1.000 -35.41 1.000 0.995

40 5.645 0.567 -659.27
0.453 0.077 0.992 -632.88 <0.001
0.544 0.140 0.997 -0.087 -633.22 <0.001 1.000
0.323 <0.001 0.989 -639.77 <0.001
0.445 0.033 0.992 0.241 -635.88 <0.001 0.005
0.004 <0.001 1.000 -629.67 <0.001
0.007 0.001 1.000 0.334 -627.09 <0.001 0.023
0.004 <0.001 1.000 1.000 -629.67 <0.001 0.979
0.007 0.001 1.000 0.334 1.000 -627.09 <0.001 0.997
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Table 2: Estimation Results for EWA Models
Test vs. Test for

ID 𝛽1 𝛽2 𝜙 l 𝛿 log- 0-Model l or 𝛿
likelihood P(> 𝜒2) P(> 𝜒2)

41 7.134 5.115 -337.32
0.953 1.966 1.000 -359.90 1.000
0.577 <0.001 1.000 -2.169 -345.83 1.000 <0.001
0.629 2.407 1.000 -334.89 0.028
0.171 2.618 1.000 0.399 -333.08 0.014 0.057
0.024 0.013 0.985 -364.17 1.000
0.043 0.016 0.947 -1.252 -354.19 1.000 <0.001
0.024 0.015 0.985 0.849 -364.15 1.000 0.843
0.044 0.016 0.946 -1.273 0.876 -354.18 1.000 0.863

42 4.195 0.342 -724.80
0.022 0.271 0.965 -721.63 0.012
0.003 0.004 0.976 113.727 -716.53 <0.001 0.001

<0.001 0.329 0.955 -717.93 <0.001
0.006 0.009 0.959 56.966 -707.82 <0.001 <0.001

<0.001 0.020 0.959 -717.39 <0.001
<0.001 <0.001 0.997 27.839 -723.43 0.254 1.000
<0.001 0.021 0.958 1.000 -717.24 0.001 0.587
<0.001 0.001 0.935 40.947 1.000 -712.14 <0.001 <0.001

Rep Agent -8.226 0.594 -39155.90
0.268 <0.001 0.992 -38052.18 <0.001
0.154 0.201 0.995 -6.500 -35458.16 <0.001 <0.001
0.110 0.333 1.000 -38144.13 <0.001
0.031 0.298 1.000 0.746 -38075.52 <0.001 <0.001
0.006 0.002 0.987 -37660.29 <0.001
0.006 0.003 0.975 -1.336 -37568.47 <0.001 <0.001
0.009 <0.001 0.986 <0.001 -37256.02 <0.001 <0.001
0.009 <0.001 0.986 0.125 <0.001 -37256.01 <0.001 <0.001

37


	The model
	Laboratory protocol
	Descriptive results
	Decision time
	Strategy choices and learning

	EWA learning with(out) loss aversion
	Estimation procedure
	Estimation results
	Estimation bias and power analysis

	Conclusion
	Software Screen
	Instructions (originally in German)
	Estimation Results

